3.3.37 \(\int \frac {x^2 (a+b \text {ArcSin}(c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\) [237]

Optimal. Leaf size=206 \[ \frac {b^2 x \sqrt {d-c^2 d x^2}}{4 c^2 d}-\frac {b^2 \sqrt {1-c^2 x^2} \text {ArcSin}(c x)}{4 c^3 \sqrt {d-c^2 d x^2}}+\frac {b x^2 \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))}{2 c \sqrt {d-c^2 d x^2}}-\frac {x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{2 c^2 d}+\frac {\sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))^3}{6 b c^3 \sqrt {d-c^2 d x^2}} \]

[Out]

-1/4*b^2*arcsin(c*x)*(-c^2*x^2+1)^(1/2)/c^3/(-c^2*d*x^2+d)^(1/2)+1/2*b*x^2*(a+b*arcsin(c*x))*(-c^2*x^2+1)^(1/2
)/c/(-c^2*d*x^2+d)^(1/2)+1/6*(a+b*arcsin(c*x))^3*(-c^2*x^2+1)^(1/2)/b/c^3/(-c^2*d*x^2+d)^(1/2)+1/4*b^2*x*(-c^2
*d*x^2+d)^(1/2)/c^2/d-1/2*x*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/c^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 213, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {4795, 4737, 4723, 327, 222} \begin {gather*} -\frac {x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{2 c^2 d}+\frac {b x^2 \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))}{2 c \sqrt {d-c^2 d x^2}}+\frac {\sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))^3}{6 b c^3 \sqrt {d-c^2 d x^2}}-\frac {b^2 \sqrt {1-c^2 x^2} \text {ArcSin}(c x)}{4 c^3 \sqrt {d-c^2 d x^2}}+\frac {b^2 x \left (1-c^2 x^2\right )}{4 c^2 \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(b^2*x*(1 - c^2*x^2))/(4*c^2*Sqrt[d - c^2*d*x^2]) - (b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(4*c^3*Sqrt[d - c^2*d*
x^2]) + (b*x^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(2*c*Sqrt[d - c^2*d*x^2]) - (x*Sqrt[d - c^2*d*x^2]*(a +
b*ArcSin[c*x])^2)/(2*c^2*d) + (Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(6*b*c^3*Sqrt[d - c^2*d*x^2])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rubi steps

\begin {align*} \int \frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}} \, dx &=-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac {\int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}} \, dx}{2 c^2}+\frac {\left (b \sqrt {1-c^2 x^2}\right ) \int x \left (a+b \sin ^{-1}(c x)\right ) \, dx}{c \sqrt {d-c^2 d x^2}}\\ &=\frac {b x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt {d-c^2 d x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}-\frac {\left (b^2 \sqrt {1-c^2 x^2}\right ) \int \frac {x^2}{\sqrt {1-c^2 x^2}} \, dx}{2 \sqrt {d-c^2 d x^2}}+\frac {\sqrt {1-c^2 x^2} \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{2 c^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b^2 x \left (1-c^2 x^2\right )}{4 c^2 \sqrt {d-c^2 d x^2}}+\frac {b x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt {d-c^2 d x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c^3 \sqrt {d-c^2 d x^2}}-\frac {\left (b^2 \sqrt {1-c^2 x^2}\right ) \int \frac {1}{\sqrt {1-c^2 x^2}} \, dx}{4 c^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b^2 x \left (1-c^2 x^2\right )}{4 c^2 \sqrt {d-c^2 d x^2}}-\frac {b^2 \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{4 c^3 \sqrt {d-c^2 d x^2}}+\frac {b x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 c \sqrt {d-c^2 d x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 c^2 d}+\frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c^3 \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.78, size = 210, normalized size = 1.02 \begin {gather*} \frac {12 a^2 c d x \left (-1+c^2 x^2\right )-12 a^2 \sqrt {d} \sqrt {d-c^2 d x^2} \text {ArcTan}\left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (-1+c^2 x^2\right )}\right )-6 a b d \sqrt {1-c^2 x^2} \left (-2 \text {ArcSin}(c x)^2+\cos (2 \text {ArcSin}(c x))+2 \text {ArcSin}(c x) \sin (2 \text {ArcSin}(c x))\right )+b^2 d \sqrt {1-c^2 x^2} \left (4 \text {ArcSin}(c x)^3-6 \text {ArcSin}(c x) \cos (2 \text {ArcSin}(c x))+\left (3-6 \text {ArcSin}(c x)^2\right ) \sin (2 \text {ArcSin}(c x))\right )}{24 c^3 d \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(12*a^2*c*d*x*(-1 + c^2*x^2) - 12*a^2*Sqrt[d]*Sqrt[d - c^2*d*x^2]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-
1 + c^2*x^2))] - 6*a*b*d*Sqrt[1 - c^2*x^2]*(-2*ArcSin[c*x]^2 + Cos[2*ArcSin[c*x]] + 2*ArcSin[c*x]*Sin[2*ArcSin
[c*x]]) + b^2*d*Sqrt[1 - c^2*x^2]*(4*ArcSin[c*x]^3 - 6*ArcSin[c*x]*Cos[2*ArcSin[c*x]] + (3 - 6*ArcSin[c*x]^2)*
Sin[2*ArcSin[c*x]]))/(24*c^3*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(516\) vs. \(2(180)=360\).
time = 0.27, size = 517, normalized size = 2.51

method result size
default \(-\frac {a^{2} x \sqrt {-c^{2} d \,x^{2}+d}}{2 c^{2} d}+\frac {a^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 c^{2} \sqrt {c^{2} d}}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{3}}{6 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )}{8 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 \arcsin \left (c x \right )^{2}-1\right ) x}{16 c^{2} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \cos \left (3 \arcsin \left (c x \right )\right )}{8 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 \arcsin \left (c x \right )^{2}-1\right ) \sin \left (3 \arcsin \left (c x \right )\right )}{16 c^{3} d \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{4 c^{3} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-c^{2} x^{2}+1}}{16 c^{3} \sqrt {-d \left (c^{2} x^{2}-1\right )}}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x}{8 c^{2} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \cos \left (3 \arcsin \left (c x \right )\right )}{16 c^{3} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \sin \left (3 \arcsin \left (c x \right )\right )}{8 c^{3} d \left (c^{2} x^{2}-1\right )}\right )\) \(517\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*a^2*x/c^2/d*(-c^2*d*x^2+d)^(1/2)+1/2*a^2/c^2/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b
^2*(-1/6*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)^3+1/8*(-d*(c^2*x^2-1))^(1/2)*
(-c^2*x^2+1)^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)+1/16*(-d*(c^2*x^2-1))^(1/2)/c^2/d/(c^2*x^2-1)*(2*arcsin(c*x)^
2-1)*x+1/8*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)*cos(3*arcsin(c*x))+1/16*(-d*(c^2*x^2-1))^(1/2)
/c^3/d/(c^2*x^2-1)*(2*arcsin(c*x)^2-1)*sin(3*arcsin(c*x)))+2*a*b*(-1/4*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/
2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)^2-1/16/c^3/(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)+1/8*(-d*(c^2*x^2-1))^(1/
2)/c^2/d/(c^2*x^2-1)*arcsin(c*x)*x+1/16*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*cos(3*arcsin(c*x))+1/8*(-d*(c
^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)*sin(3*arcsin(c*x)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-1/2*a^2*(sqrt(-c^2*d*x^2 + d)*x/(c^2*d) - arcsin(c*x)/(c^3*sqrt(d))) - sqrt(d)*integrate((b^2*x^2*arctan2(c*x
, sqrt(c*x + 1)*sqrt(-c*x + 1))^2 + 2*a*b*x^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)))*sqrt(c*x + 1)*sqrt(-
c*x + 1)/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-(b^2*x^2*arcsin(c*x)^2 + 2*a*b*x^2*arcsin(c*x) + a^2*x^2)*sqrt(-c^2*d*x^2 + d)/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**2*(a + b*asin(c*x))**2/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2*x^2/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{\sqrt {d-c^2\,d\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2),x)

[Out]

int((x^2*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________